jueves, 6 de noviembre de 2008

UN VIDEO DE ADN

miércoles, 5 de noviembre de 2008


ADN Y ARN
A D N
Pruebas de ADN, utilización de restos orgánicos para identificar el ácido desoxirribonucleico (ADN) de una persona. Se ha realizado un buen número de pruebas científicas que prueban que el ADN es la base de la herencia, entre las que se pueden destacar: a) en el proceso normal de reproducción celular, los cromosomas (estructuras con ADN) se duplican para proporcionar a los núcleos hijos los mismos genes que la célula madre; b) las mutaciones provocadas se producen por una alteración de la estructura del ADN que tienen como efecto una grave alteración de la descendencia de las células afectadas; c) el ADN extraído de un virus basta por sí mismo para reproducir el virus entero, por lo que parece claro que, en la esfera jurídica y a efectos legales, tiene toda la información genética para ello. Por todo ello, el ADN puede llegar a ser muy útil en Derecho, no sólo para identificar a una persona gracias a los restos orgánicos encontrados donde se haya cometido un crimen (en especial en delitos contra la libertad sexual o en los que se ha ejercido violencia), sino también para determinar la filiación biológica de una persona.
Ácido desoxirribonucleico (ADN), material genético de todos los organismos celulares y casi todos los virus. El ADN lleva la información necesaria para dirigir la síntesis de proteínas y la replicación. Se llama síntesis de proteínas a la producción de las proteínas que necesita la célula o el virus para realizar sus actividades y desarrollarse. La replicación es el conjunto de reacciones por medio de las cuales el ADN se copia a sí mismo cada vez que una célula o un virus se reproduce y transmite a la descendencia la información que contiene. En casi todos los organismos celulares el ADN está organizado en forma de cromosomas, situados en el núcleo de la célula.
ESTRUCTURA
Cada molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos. Estas cadenas forman una especie de escalera retorcida que se llama doble hélice. Cada nucleótido está formado por tres unidades: una molécula de azúcar llamada desoxirribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina (abreviada como A), guanina (G), timina (T) y citosina (C). La molécula de desoxirribosa ocupa el centro del nucleótido y está flanqueada por un grupo fosfato a un lado y una base al otro. El grupo fosfato está a su vez unido a la desoxirribosa del nucleótido adyacente de la cadena. Estas subunidades enlazadas desoxirribosa-fosfato forman los lados de la escalera; las bases están enfrentadas por parejas, mirando hacia el interior, y forman los travesaños.
Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entre sí por enlaces químicos débiles llamados enlaces de hidrógeno.
En 1953, el bioquímico estadounidense James Watson y el biofísico británico Francis Crick publicaron la primera descripción de la estructura del ADN. Su modelo adquirió tal importancia para comprender la síntesis proteica, la replicación del ADN y las mutaciones, que los científicos obtuvieron en 1962 el Premio Nobel de Medicina por su trabajo.


C I D O R I B O N U C L E I C O (A R N)
Material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
A R N C E L U L A R
En organismos celulares, el ARN es una cadena de polinucleótidos de una sola hebra, es decir, una serie de nucleótidos enlazados. Hay tres tipos de ARN: el ARN ribosómico (ARNr) se encuentra en los ribosomas celulares (estructuras especializadas situadas en los puntos de síntesis de proteínas); el ARN de transferencia (ARNt) lleva aminoácidos a los ribosomas para incorporarlos a las proteínas; el ARN mensajero (ARNm) lleva una copia del código genético obtenida a partir de la secuencia de bases del ADN celular. Esta copia especifica la secuencia de aminoácidos de las proteínas. Los tres tipos de ARN se forman a medida que son necesarios, utilizando como plantilla secciones determinadas del ADN celular.
A R N V Í R I C O
Algunos virus tienen ARN de cadena doble, formado por dos cadenas de polinucleótidos complementarios. En estos virus, la replicación del ARN en la célula hospedante sigue la misma pauta que la replicación del ADN. Cada nueva molécula de ARN tiene una cadena de polinucleótidos procedente de otra anterior. Cada una de las bases de los nucleótidos de la cadena se acopla con una base complementaria de otro nucleótido de ARN: adenina con uracilo y guanina con citosina. Hay dos tipos de virus con ARN de cadena única. Uno de ellos, el poliovirus, virus causante de la poliomielitis humana (véase Enterovirus), penetra en la célula hospedante y sintetiza una cadena de ARN complementaria para transformar la molécula sencilla en doble. Durante la replicación las dos hebras se separan, pero sólo la formada recientemente atrae nucleótidos con bases complementarias. Por tanto, la cadena de polinucleótidos formada como resultado de la replicación es exactamente igual a la original.
El otro tipo, que agrupa los llamados retrovirus, comprende el virus de la inmunodeficiencia humana (VIH), que causa el SIDA, y otros virus causantes de tumores. Después de entrar en la célula hospedante, el retrovirus forma una cadena de ADN complementaria de su propio ARN valiéndose de los nucleótidos de la célula. Esta nueva cadena de ADN se replica y forma una doble hélice que se incorpora a los cromosomas de la célula hospedante, donde a su vez se replica junto con el ADN celular. Mientras se encuentra en la célula hospedante, el ADN vírico sintetizado a partir del ARN produce virus ARN de cadena única que abandonan la célula e invaden otras.
Definion:
ADN, ARN, Nucleótido, Bases Nitrogenadas.
- Ácido Desoxirribonucleico (ADN):Ácido nucleico constituido por gran número de nucleótidos unidos y dispuestos en dos hélice. Constituye un material cromosómico y contiene toda
información hereditaria correspondiente a la especie.
-Ácido Ribonucleico (ARN):Ácido nucleico constituido por un gran número de nucleótidos unidos y dispuestos linealmente. Existen diverso tipos de ARN: ARN mensajero, ARN ribosómico y ARN de transferencia.
-Nucleótidos:Cada nucleótido o unida básica esta formado por la combinación de un
azúcar, una base nitrogenada y un ácido fosfórico.
- Bases nitrogenadas:Son combinaciones de
carbono, hidrógeno y nitrógeno
Defina la
estructura del ADN, modela de Watson y CrickSegún Watson y Crick, si se toma una escalera de mano y se tuerce formando una hélice, manteniendo dos peldaños perpendiculares, constituiría un modelo apropiado para el ADN.Los peldaños de la escalera estarán formados por bases nitrogenadas: Adenina (a), Tinina (t), Guanina (g) y Citosina (c), una base por cada azúcar - fosfato y dos bases formando cada peldaño. Las dos bases emparejadas se encuentran a través de una hélice y se mantienen juntas mediantes puentes de hidrógeno, enlace químicos relativamente débiles.
Explica la duplicación del ADNEn el momento de la duplicación de los
cromosomas, la molécula de ADN de abre gradualmente y las bases se separan por los puentes de hidrógeno. Los dos cordones se separan y se forman otros nuevos a lo largo de cada uno de los viejos, utilizando la materia prima de las célulassin en el cordón viejo se encuentra una t, únicamente una a podrá acoplarse en el lugar correspondiente del nuevo cordón.
Establezca diferencia entre ADN y ARNEl ARN se diferencia químicamente del ADN por dos cosas: la molécula del azúcar del ARN contiene un
átomo de oxigeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.
Mutación, tipos, causas e importancia.Entendemos por mutación todas las alteraciones que se producen en el material cromosómico o genético de las
células que se transmiten a los descendientes.

Tipos:Mutaciones génica :Se deben a alteraciones de los genes a nivel molecular.Este tipo de mutación puede afectar una célula somática en cuyo caso no se hereda. Cuando afecta a células germinales, puede transmitirse a la descendencia.Mutaciones cromosómica: Se producen cuando ocurre una alteración en la estructura de los cromosomas. Se producen las alteraciones de la estructura del cromosoma por: Translocación, Inversión, Delección o deficiencia y duplicación.
Causas Entre las causas que pueden provocar las mutaciones podemos mencionar las sustancias químicas y los agentes físicos.-Sustancias químicas. El
gas mostaza, el ácido nitroso, la hidroxilamina, el uretano y otras sustancias químicas pueden provocar mutaciones.-Mutaciones inducidas por agentes físicos. Entre los agentes físicos que provocan mutaciones podemos señalar: la radiación ultravioleta, los rayos X y los rayos gamma.
ImportanciaLos cambios devolutivos ocurridos a lo largo de los siglos en los seres vivos sean producido lentamente y con base en las mutaciones aparecidas en el material genético que provoca la aparición súbita de nuevos caracteres o la modificación de los existentes.
HERENCIA


GENETICA
GENETICA Y HERENCIA
La genética, pues, intenta explicar cómo se heredan y se modifican las características de los seres vivos, que pueden ser de forma (la altura de una planta, el color de sus semillas, la forma de la flor; etc.), fisiológicas (por ejemplo, la constitución de determinada proteína que lleva a cabo una función específica dentro del cuerpo de un animal), e incluso de comportamiento (en la forma de cortejos antes del apareamiento en ciertos grupos de aves, o la forma de aparearse de los mamíferos, etc.). De esta forma, la genética trata de estudiar cómo estas características pasan de padres a hijos, a nietos, etc., y por qué, a su vez, varían generación tras generación.
La genética es la disciplina unificadora de las ciencias biológicas, ya que sus principios generales se aplican a todos los seres vivos. En todas las áreas de la Biología se recurre a los conceptos que gobiernan la
herencia, cuando se trata de explicar la variabilidad existente en la naturaleza, así como también cuando el hombre transforma la naturaleza para su beneficio. El mejoramiento de plantas y animales, la comprensión de la patología humana y producción de medicamentos por medio de la biotecnología, son apenas algunos ejemplos.
La genética es la ciencia que se ocupa del estudio de la estructura y función de los genes en los diferentes organismos, así como también del comportamiento de los genes a nivel de poblaciones.
El desarrollo de nuevos métodos para la investigación genética en los últimos años, ha transformado a esta disciplina en el centro de la biología y de la medicina en particular. Así por ejemplo, el estudio de los principios genéticos básicos y sus aplicaciones en el diagnóstico, es de suma importancia en todas las profesiones relacionadas con la salud.
Además de su relevancia teórica para las ciencias biológicas, los principios de la genética tienen importantes aplicaciones prácticas, ya sea en la producción de vegetal, tanto de alimentos como productos de interés industrial o farmaceutico, así como en la salud humana y la produccíon y salud animal.
genetica
La genética es la transmisión a través del material genético contenido en el
núcleo celular, de las características anatómicas, fisiológicas, etc. de un ser vivo a sus descendientes. El ser vivo resultante tendrá caracteres de uno o los dos padres.
La herencia consiste en la transmisión a su descendencia de los caracteres de los ascendentes. El conjunto de todos los caracteres transmisibles, que vienen fijado en los genes, recibe el nombre de
genotipo y su manifestación exterior en el aspecto del individuo el de fenotipo. Se llama idiotipo al conjunto de posibilidades de manifestar un carácter que presenta un individuo.
Para que los genes se transmitan a los descendientes es necesaria una reproducción idéntica que dé lugar a una réplica de cada uno de ellos; este fenómeno tiene un lugar en la
mitosis. En el organismo que surge del cigoto, a medida que va desarrollándose a partir del cúmulo inicial de célula es posible diferenciar dos estirpes celulares: una línea somática, que dará lugar a los sistemas orgánicos que mantendrán con vida al organismo, y otra germinal, que será la encargada de que el organismo se reproduzca.
La mitosis, o división del núcleo de la célula, es un proceso que consta de cuatro etapas:
profase (los cromosomas se espiralizan y hacen visibles, desaparecen el nucleolo y la membrana nuclear, aparece una serie de filamentos llamado huso acromático donde se insertan los cromosomas), metafase (los cromosomas adquieren una forma completa y se disponen en una zona central llamada placa ecuatorial), anafase (los cromosomas se dividen en dos partes, llamadas cromatidios, que emigran hacia los polos) y telofase (los cromatidios se sitúan en los polos y reaparecen el nucleolo y la membrana nuclear). Después de esta última fase se produce un periodo llamado interfase, en el cual los cromosomas vuelven a hacerse invisibles y los genes entran en acción.
Desde siempre el hombre se interesó por descubrir el mecanismo hereditario, pero su complejidad es tal que solamente a fines del siglo pasado se pudo conocer el modo de transmisión de los genes, gracias a los estudios del agustino Gregorio Mendel que, en 1856 comenzó una investigación en el huerto de su convento que le llevo al conocimiento de las leyes de la herencia biológica. Realizó sus experimentos en razas de guisantes común, raza que seleccionó y cultivó reiteradamente.
Se ha podido comprobar estudiando escritos de autores anteriores que los hombres tuvieron ya desde la antigüedad algunas ideas sobre la herencia biológica.
Los resultados obtenidos fueron publicados por la Sociedad de Historia Natural de Brunn en 1866, pero tuvieron poca difusión y el mundo científico las pasó por alto. En 1900, fueron redescubiertas las leyes de la herencia, de un modo independiente y simultáneo, por tres investigadores: Hugo de Vries, Karl Correns y Erich Tschermak, que hallaron al rebuscar en la bibliografía la obra de Mendel y tuvieron que ceder a este la prioridad del descubrimiento.
Entre las cuestiones que estudia la genética destacan:
El conocimiento de la naturaleza de los genes.
El conocimiento de las estructuras portadoras de esos genes.
Los mecanismos de transmisión de estos.
La influencia de los genes en el desarrollo y evolución de los organismos.
El material hereditario esta formado por núcleo-proteínas y esta contenido en los cromosomas. Hay casos en que, en lugar de núcleo-proteínas, existen ácidos nucleicos solamente. Pero unidos o no a proteínas, los ácidos nucleicos son los portadores de la herencia biológica en todos los seres vivos. Este es uno de los
Los ácidos nucleicos se han conocidos perfectamente gracias a virus y bacterias, dada la unidad biológica estructural y funcional de todos los seres vivos. El ADN y ARN intervienen en las biosíntesis de ellos mismos y de todos los demás componentes celulares, según un código genético que se transmite de padre a hijos.
Mendel utilizó, lo mismo que sus seguidores inmediatos, organismos diplontes procedentes de un cigoto que, al tener dos series de cromosomas, tiene dos series de genes. Pero mucho más sencillo es el estudio en los seres procariontes pues, al ser haploide, falta en ellos la meiosis y tienen una serie única de genes. Sin embargo, por haberse conocido primeramente la herencia mendeliana, se estudiará ésta en primer lugar
hallazgos fundamentales de la biología actual.
Leyes de Mendel
Conviene aclarar que Mendel, por ser pionero, carecía de los conocimientos actuales sobre la presencia de pares de alelos en los seres vivos y sobre el mecanismo de transmisión de los cromosomas, por lo que esta exposición está basada en la interpretación posterior de los trabajos de Mendel.
A continuación se explican brevemente las leyes de Mendel:
Primera ley de Mendel: A esta ley se le llama también Ley de la uniformidad de los híbridos de la primera generación (F1), y dice que cuando se cruzan dos variedades individuos de raza pura, ambos
homocigotos, para un determinado carácter, todos los híbridos de la primera generación son iguales.
Los individuos de esta primera generación filial (F1) son
heterocigóticos o híbridos, pues sus genes alelos llevan información de las dos razas puras u homocigóticas: la dominante, que se manifiesta, y la recesiva, que no lo hace..
Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían las semillas amarillas y con una variedad que producía las semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre plantas con semillas amarillas.
Segunda ley de Mendel: A la segunda ley de Mendel también se le llama de la separación o disyunción de los alelos.
Experimento de Mendel. Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción que se indica en la figura. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación.
Los dos
alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos.
Otros casos para la segunda ley. En el caso de los genes que presentan
herencia intermedia, también se cumple el enunciado de la segunda ley. Si tomamos dos plantas de flores rosas de la primera generación filial (F1) y las cruzamos entre sí, se obtienen plantas con flores blancas, rosas y rojas. También en este caso se manifiestan los alelos para el color rojo y blanco, que permanecieron ocultos en la primera generación filial.
Retrocruzamiento
Retrocruzamiento de prueba.
En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo. La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo- del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigótica recesiva (aa).
- Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.
- Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50%.
Tercera ley de Mendel. Se conoce esta ley como la de la herencia independiente de caracteres, y hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.
Sexualidad
De acuerdo con la
Organización Mundial de la Salud (OMS) "la sexualidad es un aspecto central del ser humano, presente a lo largo de su vida. Abarca al sexo, las identidades y los papeles de género, el erotismo, el placer, la intimidad, la reproducción y la orientación sexual. Se vivencia y se expresa a través de pensamientos, fantasías, deseos, creencias, actitudes, valores, conductas, prácticas, papeles y relaciones interpersonales. La sexualidad puede incluir todas estas dimensiones, no obstante, no todas ellas se vivencian o se expresan siempre. La sexualidad está influida por la interacción de factores biológicos, psicológicos, sociales, económicos, políticos, culturales, éticos, legales, históricos, religiosos y espirituales" (OMS, 2006).
Sexualidad
Conjunto de fenómenos emocionales y de conducta relacionados con el sexo, que marcan de forma decisiva al ser humano en todas las fases de su
desarrollo.
El concepto de sexualidad comprende tanto el impulso sexual, dirigido al goce inmediato y a la reproducción, como los diferentes aspectos de la relación psicológica con el propio cuerpo (sentirse hombre, mujer o ambos a la vez) y de las expectativas de rol social. En la vida cotidiana, la sexualidad cumple un papel muy destacado ya que, desde el punto de vista emotivo y de la relación entre las personas, va mucho más allá de la finalidad reproductiva y de las
normas o sanciones que estipula la sociedad.
Además de la unión sexual y emocional entre personas de diferente sexo (véase Heterosexualidad), existen relaciones entre personas del mismo sexo (véase
Homosexualidad) que, aunque tengan una larga tradición (ya existían en la antigua Grecia y en muchas otras culturas), han sido hasta ahora condenadas y discriminadas socialmente por influencias morales o religiosas.
Durante siglos se consideró que la sexualidad en los animales y en los hombres era básicamente de tipo instintivo (véase Instinto). En esta creencia se basaron las
teorías para fijar las formas no naturales de la sexualidad, entre las que se incluían todas aquellas prácticas no dirigidas a la procreación. Hoy, sin embargo, sabemos que también algunos mamíferos muy desarrollados presentan un comportamiento sexual diferenciado, que incluye, además de formas de aparente homosexualidad, variantes de la masturbación y de la violación. La psicología modernadeduce, por tanto, que la sexualidad puede o debe ser aprendida. Los tabúes sociales o religiosos —aunque a veces han tenido su razón de ser en algunas culturas o periodos históricos, como en el caso del incesto— pueden condicionar considerablemente el desarrollo de una sexualidad sana desde el punto de vista psicológico.
El neurólogo
Sigmund Freud postuló la primera teoría sobre el desarrollo sexual progresivo en el niño, con la que pretendía explicar también la construcción de una personalidad normal o anormal en el mismo. Según Freud, el desarrollo sexual se inicia con la fase oral, caracterizada porque el niño obtiene una máxima satisfacción al mamar, y continúa en la fase anal, en la que predominan los impulsos agresivos y sádicos. Después de una fase latente o de reposo, se inicia la tercera fase del desarrollo, la genital, con el interés centrado en los órganos sexuales (véase Aparato reproductor). La alteración de una de estas tres fases conduce, según la teoría de Freud, a la aparición de trastornos específicos sexuales o de la personalidad. Con el paso del tiempo, algunas de las tesis postuladas en su teoría del psicoanálisis han sido rechazadas, en especial sus teorías sobre la envidia del pene y sobre la vida sexual de la mujer.
A partir de la década de 1930, comenzó a realizarse la
investigación sistemática de los fenómenos sexuales. Posteriormente, la sexología, rama interdisciplinar de la psicología, relacionada con la biología y la sociología, tuvo un gran auge al obtener, en algunos casos, el respaldo de la propia sociedad, principalmente durante los movimientos de liberación sexual de finales de la década de 1960 y principios de la de 1970. Los primeros estudios científicos sobre el comportamiento sexual se deben a Alfred Charles Kinsey y a sus colaboradores. En ellos pudo observarse que existen grandes diferencias entre el comportamiento deseable exigido socialmente y el comportamiento real. Asimismo, se observó que no existe una clara separación entre el comportamiento heterosexual y el homosexual ya que, según encuestas de esa época, el 10% de las mujeres y el 28% de los hombres admitían tener comportamientos homosexuales y un 37% de los hombres estar interesados en la homosexualidad. En la década de 1960, William H. Masters y Virginia E. Johnson investigaron por primera vez en un laboratorio los procesos biológicos de la sexualidad, elaborando el famoso "Informe de Masters y Johnson".
Actualmente, en el límite de las formas ampliamente aceptadas de comportamiento sexual se encuentran las llamadas perversiones. La
evoluciónen los usos y costumbres y el ensanchamiento del margen de tolerancia ha hecho que conductas consideradas tradicionalmente perversas se admitan como válidas en el marco de los derechos a una sexualidad libre. Sólo en los casos de malestar o de conflicto del propio individuo con sus tendencias, o en aquellos en los que se pone en riesgola integridad física y moral de terceros, se impone la necesidad de tratamiento psicoterapéutico. La sexualidad, en definitiva, no debe apartarse de dos principios fundamentales: el mutuo consentimiento y la superación de la autocensura, para que cada individuo se acepte a sí mismo, aunque ello exija a veces lograr el difícil equilibrio entre las inclinaciones individuales y ciertos prejuicios y atavismos sociales.
La sexualidad es una manera de comportarnos, de sentir, de hacer y tiene que ver con factores biológicos, psicológicos y sociales. En la sexualidad tenemos que analizar la sociedad, la familia o el grupo humano que rodea a la persona “x” que estamos hablando, por otro lado tenemos que pensar “¿Quién es esa persona?” desde el punto de vista psicológico, también se debe ver desde el punto de vista biológico por que no es lo mismo hablar de sexualidad masculina que hablar de sexualidad femenina.Cuando se llega a agrupar esos tres conceptos, es decir el social, el psicológico y el biológico, se puede hablar de sexualidad. La sexualidad tiene funciones especificas en el ser humano y la principal es el placer y la otra es la cercanía con el otro; esto es de manera primordial, porque la función secundaria de la sexualidad en el ser humano es la reproducción.
La sexualidad es el conjunto de condiciones
anatómicas, fisiológicas y psicológico-afectivas del mundo animal que caracterizan cada sexo. También es el conjunto de fenómenos emocionales y de conducta relacionados con el sexo, que marcan de manera decisiva al ser humano en todas las fases de su desarrollo.
Durante siglos se consideró que la sexualidad en los animales y en los hombres era básicamente de tipo
instintivo. En esta creencia se basaron las teorías para fijar las formas no naturales de la sexualidad, entre las que se incluían todas aquellas prácticas no dirigidas a la procreación.